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a b s t r a c t

Laminar mixed convection over an isothermal vertical plate has been modeled with first-order momen-
tum and thermal discontinuities at the wall. Local non-similarity transformations, using two non-similar-
ity variables, have been applied to study the mixed convection boundary layer problem. Numerical
solutions were obtained for varying conditions in assisting flow based on the three-equation model.
Non-similar velocity and temperature distributions within the boundary layer have been presented.
Results are also presented for the effect of non-continuum upon wall slip velocity, temperature jump,
wall shear stress and boundary layer thickness in both gaseous and liquid flows for Grx=Re2

x varying from
0.0001 to 8.0.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Combined forced and natural convection over a flat plate has
been widely studied from both theoretical and experimental
standpoints over the past a few decades. Early investigations
mainly sought the similarity characteristics within the boundary
layer framework. Although the mixed convection problem gener-
ally does not admit itself to self-similar solutions, studies have
been conducted to examine the conditions under which self-simi-
lar solutions do exist in the mixed convection regime. Sparrow
et al. [1] examined combined convection about a non-isothermal
body with non-uniform free stream velocity. The results showed
that similar solutions exist only when free stream velocity and sur-
face temperature vary with distance along the plate as xm and
x2m�1. The criteria for pure and mixed flows were also discussed
for both aiding and opposing cases. Schneider [2] examined the
mixed convection over a horizontal plate using the first-order
boundary layer theory. An exact similarity solution was given for
the wall temperature that is inversely proportional to the square
root of the distance along the plate. Merkin and Pop [3] also stud-
ied the mixed convection boundary layer problem using a similar-
ity method. It was found out that the critical Prandtl number
(approximately 0.761) will affect the solution structure in both
assisting and opposing flows.

In addition to seeking the exact self-similar solution, other ap-
proaches such as asymptotic solutions, local-similarity and pertur-
bation expansion methods, aiming to address a more general
mixed convection problem, were also reported in the literature.
Oosthuizen and Hart [4] developed a simple implicit finite differ-
ence scheme to address the mixed convection over flat plates for
ll rights reserved.

: +1 205 348 6419.
both aiding and opposing flows. Numerical results were obtained
for cases of uniform temperature and uniform heat flux for Pr of
0.7, 3 and 10. Merkin [5] studied the mixed boundary layer flow
over a semi-infinite vertical plate. A series solution was found valid
only near the leading edge. A numerical integration method was
introduced to extend the solution to the position far downstream
where buoyancy force dominates. In addition, flow separation
has been shown in the opposing case. Acrivos [6] examined the
mixed convection boundary layer flow with the aid of an approxi-
mate technique of asymptotic solutions. The result has shown that
for large values of Pr the relative importance of the forced and free
convection is controlled by Gr/Re2Pr1/3, however, for Pr� 1 the
controlling index is Gr/Re2. Lloyd and Sparrow [7] employed the
local similarity method to transform the boundary-layer equations
into a system of ordinary differential equations using the parame-
ter Grx=Re2

x . Numerical solutions were obtained for Pr varying
from 0.003 to 100 and Grx=Re2

x varying from 0 to 4, i.e., spanning
from pure forced convection to a strong buoyancy effects. While
Gr/Re2 is conventionally regarded as the appropriate scaling for
mixed convection, a few researchers proposed other forms to facil-
itate the study in various mixed convection problems. Raju [8]
introduced two controlling parameters (1 + Gr2/Re4)�1 and (1 +
Gr2/Re5)�1 to map the entire domain of mixed convection for verti-
cal and horizontal plate, respectively. Results from local similarity
and local non-similarity method were presented. It has shown that
the former approach provides reasonable estimation for wall fric-
tion and Nusselt numbers, while rendering appreciable deviation
in velocity profiles compared to the rigorous finite difference solu-
tion. Lin and Chen [9] employed the variable (rRa)1/4(xRe)1/2 as
the controlling parameter in addressing mixed convection over a
vertical plate. Finite difference solutions were obtained for Prandtl
numbers between 0.001 and 10,000. Zubair and Kadaba [10] inves-
tigated the transient mixed convection flow with the aid of a
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Nomenclature

Cf skin friction coefficient
cp specific heat at constant pressure
f momentum accommodation coefficient
F transformed stream function
G n-derivative of F
g gravitational acceleration
Gr Grashof number, Gr = gbDTL3/m2

H n-derivative of G
h heat transfer coefficient
k thermal conductivity
Kn Knudsen number, Kn = k/L
L characteristic length
Nu Nusselt number, Nu = hL/k
p pressure
Pr Prandtl number, Pr = l cp/k
Re Reynolds number, Re = u1L/m
T temperature
u streamwise velocity
v normal velocity
x coordinate along the plate
y coordinate normal to the plate

Greek symbols
a thermal accommodation coefficient
b volumetric thermal expansion coefficient

c specific heat ratio of air
d boundary layer thickness
g pseudo-similarity variable
h dimensionless temperature
j dimensionless non-continuum variable
k mean free path
l dynamic viscosity
m kinematic viscosity
n controlling parameter of mixed convection
s shear stress
u n-derivative of h
v n-derivative of u
W stream function

Subscripts
L length of entire plate
x local x position
slip slip condition
w wall boundary
1 ambient conditions
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two-step, group transformation method. Discussion was given on
constructing the reduced governing equations and boundary con-
ditions for miscellaneous cases including steady mixed convection,
pure steady and unsteady forced and natural convection. Risbeck
et al. [11] examined laminar mixed convection over a horizontal
plate with a power-law variation of surface temperature, i.e.,
T(x) = T1 + axn. Based on a weighted finite difference solution, the
results showed that both local wall heat flux and wall shear stress
will increase with the increasing value of n for a given Pr. For addi-
tional information on prior studies of mixed convection behavior,
the reader may wish to consult the book by Gebhart et al. [12].

The majority of previous studies were conducted within the
continuum regime. Nonetheless, as the mean free path of the flow
becomes comparable to the characteristic length scale of the prob-
lem, the flows will start to exhibit non-continuum phenomena as a
result of fewer molecular collisions within the dimension of inter-
est. The deviation from interfacial thermodynamic equilibrium will
lead to a flow regime where the conventional no-slip wall condi-
tion is not valid. According to the value of Knudsen number, the
flows can be classified into three categories: continuum flow
(Kn < 0.01), slip flow (0.01 6 Kn 6 0.1) and transitional flow
(0.1 < Kn < 10) [13]. As the flow deviates away from the continuum
limit, the conventional no-slip wall boundary condition fails to
accurately model the surface interaction between the fluid and
the wall boundary due to the low collision frequency [13]. Slip
models have been proposed to ameliorate the prediction of the
non-continuum phenomenon near wall boundaries within the
framework of the continuum assumption. For gaseous flows, the
Maxwell slip model relates the slip velocity at the wall to the local
velocity gradient based on the gas kinetic theory, given by [14]

uslip �
2
f
� 1

� �
k
du
dy

����
w

ð1Þ

For liquid slip flows, the linear Navier boundary condition provides
an empirical model relating the slip velocity at the wall to the local
shear rate by [14]
uslip � ls
du
dy

����
w

ð2Þ

where ls is the slip length. It has been found that the slip length de-
pends on the liquid, the flow geometry and the shear rate [14]. An
experimental study by Tretheway and Meinhart [15] has found that
the slip length for water flowing over a hydrophobic surface is
approximately 1 lm.

In addition to velocity slip, as the Knudsen number grows be-
yond the continuum limit, a temperature jump may exist between
the gas molecules and the wall boundary. An interfacial tempera-
ture discontinuity physically accounts for gas molecules not ther-
mally accommodated with the wall and thus is very important to
the prediction of energy transfer. Analogous to velocity slip, the ki-
netic theory expression for a first-order temperature jump condi-
tion is given by [14]

Tslip � Tw �
2
a
� 1

� �
2c

cþ 1
k
Pr

dT
dy

����
w

ð3Þ

Over the past two decades, studies have examined both gaseous and
liquid internal flows at microscales. A brief summary of previous
studies can be found in the literature [16–21]. Nonetheless, the liter-
ature on external convective flow with slip boundary conditions is
found to be very limited. Oosthuizen [22] roughly estimated the
effects of very small amounts of slip (with Kn varying from 10�5 to
10�4) on the free convection from a vertical plate using the Von Kar-
man integral approach. A slight increase was predicted in the aver-
age Nusselt number with the increasing slip condition. Eldighidy
and Fathalah [23] examined the effect of momentum slip on natural
convection from a vertical plate. Temperature jump, however, was
not considered in the boundary condition. The results indicated that
velocity and heat transfer at the plate will be enhanced with increas-
ing Kn. Martin and Boyd [24] investigated the forced convection over
a horizontal plate with slip conditions. Numerical solutions were
obtained using finite difference methods. Results suggested that
the flow structure, velocity profile, and boundary layer thickness
will be altered by the rarified condition. To the authors’ knowledge,
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no previous study has been undertaken to examine the simulta-
neous momentum and thermal slip effect upon mixed convection,
though the interfacial discontinuity is important in predicting the
flow and heat transfer behavior at slightly rarefied conditions.

The aim of this study is to provide a better understanding of the
effect interfacial velocity and temperature discontinuity have upon
combined forced and natural convection. This paper provides local
non-similar solutions to the boundary-layer equations for mixed
convection over a vertical isothermal plate in a slightly rarefied
environment. Simultaneous velocity slip and temperature jump
boundary conditions were considered for gaseous slip flow. The vari-
ations in velocity and temperature distributions, wall shear stress
and boundary layer thickness with the condition of interfacial slip
have been analyzed in gases. A correlation of skin friction coefficient
and average heat transfer, i.e., Nusselt number, over the plate has
been formulated in an integral form as a function of the non-contin-
uum parameter and the thermophysical properties of the flow.

2. Mixed convection with interfacial slip

A schematic illustration and coordinate system of the mixed
convection over an isothermal vertical plate is shown in Fig. 1,
where Ts and T1 denote the uniform temperature of plate surface
and the ambient temperature respectively, and u1 is uniform free
stream velocity. When Ts > T1, the flow is designated as aiding flow
since buoyancy effects have a positive component with the free
stream velocity. On the other hand if Ts < T1, it is designated as
opposing flow as buoyancy effects are in the opposite direction
with the free stream velocity.

The governing equations for laminar, steady and incompressible
flow are, respectively, the continuity, momentum and energy
equations. Assumptions are also made that viscous dissipation is
neglected and that the variation of fluid properties is taken to be
negligible except for the essential density variation appearing in
the gravitational body force. Therefore the resulting equations for
the present two-dimensional problem are given by

@u
@x
þ @v
@y
¼ 0 ð4Þ

q u
@u
@x
þ v @u

@y

� �
¼ � @p

@x
þ l @2u

@x2 þ
@2u
@y2

 !
� qg ð5Þ

q u
@v
@x
þ v @v

@y

� �
¼ � @p

@y
þ l @2v

@x2 þ
@2v
@y2

 !
ð6Þ
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@T
@x
þ v @T

@y

� �
¼ k

@2T
@x2 þ

@2T
@y2

 !
ð7Þ
Fig. 1. Mixed convection over a vertical plate.
With the boundary layer assumption and Boussinesq approxima-
tion [25], Eqs. (4) through (7) are reduced to the boundary-layer
equations

u
@u
@x
þ v @u

@y
¼ �gbðT � T1Þ þ t

@2u
@y2 ð8Þ

u
@T
@x
þ t

@T
@y
¼ a

@2T
@y2 ð9Þ

The positive sign in Eq. (8) applies in buoyancy assisting flow while
the negative sign applies in opposing flow.

A group of dimensionless parameters are introduced to seek the
local non-similar solutions including a pseudo-similarity position
parameter g, dimensionless stream function F and dimensionless
temperature h, which are defined as

g ¼ yðu1=mxÞ1=2 ð10Þ
Fðn;gÞ ¼ w=ðu1mxÞ1=2 ð11Þ
hðn;gÞ ¼ ðT � T1Þ=ðTw � T1Þ ð12Þ

In addition, another dimensionless variable usually employed as a
controlling index to characterize the relative importance of free
convection to forced convection is defined as

n ¼ Grx=Re2
x ð13Þ

n can span from 0 to 1, corresponding to the two limiting cases of
pure forced convection and pure natural convection, respectively.
When n is approximately unity, effects from natural and forced con-
vection are comparable. Note that n is in proportional to x. There-
fore, the initial boundary layer flow is dominated by forced
convection, but as the distance from leading edge increases, the
contribution of free convection will become prominent.

2.1. Interfacial slip boundary conditions

First consider the wall boundary conditions for gaseous flow
within slip regime. Two interfacial discontinuities involving
momentum and energy transfer, given by Eqs. (1) and (3), are used
to replace the no-slip conditions applied for non-rarefied flows. In
light of the defined dimensionless variables, the momentum and
thermal boundary conditions at the wall can be transformed to
the dimensionless forms as

F 0ð0Þ ¼ 2
r
� 1

� �
KnxRe1=2

x F 00ð0Þ ð14Þ

hð0Þ ¼ 2
a
� 1

� �
1
Pr

KnxRe1=2
x

2c
cþ 1

h0ð0Þ þ 1 ð15Þ

where prime denotes the derivative with respective to g. Knx and
Rex are, respectively, the local Knudsen number, and local Reynolds
number. c is 7/5 for a diatomic gas, 5/3 for a monatomic gas, and
approximately 1.0 for a liquid [14]. f is defined as the ratio of diffuse
reflections to the total number of reflections, and a is the fraction of
impinging molecules which becomes accommodated to the temper-
ature of the wall. Experiments have shown that the momentum and
thermal accommodation coefficients are fairly close to unity for
rough surfaces where molecules are reflected by the wall at random
angles [14]. On a microscale level, even a highly polished surface
can be viewed as rough for molecules. f and a are therefore assumed
to be of unity in this study, i.e., we have assumed diffuse reflection
and complete thermal accommodation between the molecules and
the wall.

Note that the above slip conditions are dependent upon the
streamwise location x. In this regard, a non-similarity variable n
is defined to describe the surface location dependence of x

j ¼ KnxRe1=2
x ð16Þ
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Similarly, in liquid flows, the Navier slip boundary conditions based
on Eq. (2) can be transformed to

F 0ð0Þ ¼ 2
f
� 1

� �
ls

x
Re1=2

x F 00ð0Þ ð17Þ

Accordingly the slip parameter for liquid flows has the form

j ¼ ls

x
Re1=2

x ð18Þ

where ls
x may be viewed as the dimensionless local slip length for li-

quid flows.
Although j is different for gaseous and liquid flows, it bears

similar physical meanings for both. First, the value of j is propor-
tional to x�1/2 and hence it describes the streamwise location along
the plate. Second, j controls the slip boundary conditions for both
flows. The magnitude of j can be used to describe the degree of
non-continuum condition at the wall, or in other words, how much
the flow deviates from the no-slip condition. For instance, if j is
zero it indicates that the x location is far downstream from the
leading edge of the plate where the slip effect will be negligible.
On the other hand, a larger value of j indicates that the boundary
condition will deviate more from the no-slip case. As j approaches
infinity, the velocity slip and temperature jump at the wall will be-
come infinity large, giving a nearly uniform velocity and tempera-
ture distribution with the ambient condition:

F 0ð0Þ ¼ 1; hð0Þ ¼ 0 as j!1 ð19Þ

It should be noted that for a very large value of j that corresponds
to a very small x at the leading edge, the boundary layer assumption
is not appropriate, and as a consequence, the boundary-layer equa-
tions become inaccurate. Moreover, if a large j is due to a Knudsen
number greater than 0.1, then the Navier–Stokes equation fails to
model the transitional or even free molecule flow regime. For this
reason, a discussion regarding large value j could be prone to error
in nature. We therefore limit the discussion in this paper to a rela-
tively small range of j from 0 to 5 as this will cover the slip flow
region.

In addition to the two slip boundary conditions, the other
boundary conditions including impermeable wall, the ambient
velocity and the ambient dimensionless temperature h are

vw ¼ 0; u1 ¼ 0; h1 ¼ 0 ð20Þ

The latter two conditions in Eq. (20) are equivalent to

F 0 ¼ 0; h ¼ 0 as g!1 ð21Þ

The mathematical expression for the normal velocity at the plate,
however, needs more consideration as will be seen shortly in the
following subsection.

2.2. Formulation of boundary-layer equations

It has been noted that mixed convection does not generally ad-
mit similar solutions due to the effect of buoyancy upon forced
convection. For the present problem, the non-similarity aspect also
arises from the presence of slip at the wall boundary. With the two
non-similarity variables n and j being dependent upon the stream-
wise location along the plate, it suggests that the reduced stream
function F, temperature distribution h and their derivatives will
also be a functions of the streamwise location. The first step of
the analysis is to transform from (x,y) coordinates to (n, g). Note
the coordinate n is dependent only on x while g is a function of
both y and x. Accordingly, the reduced stream function can be
modified to be F(n,g) and the dimensionless temperature h(n,g).
With the modified definitions, the longitudinal and normal velocity
components can be derived as
u ¼ @w
@y
¼ u1F 0ðj;gÞ ð22Þ

v ¼ � @w
@x
¼ � @

@x
Fðj;gÞðu1mxÞ1=2
h i

¼ 1
2

ffiffiffiffiffiffiffiffiffi
u1m

x

r
gF 0 þ j

@F
@j
� F

� �
ð23Þ

Therefore, the dimensionless velocity components may be defined
as

u� ¼ u=u1 ¼ F 0ðn;gÞ ð24Þ

V� ¼ v
ð1=2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vu1=x

p ¼ gF 0 þ j
@F
@j
� F ð25Þ

In terms of the above relations, the governing equations of Eqs. (8)
and (9) can be transformed as

F 000 þ 1
2

FF 00 � nh ¼ n F 0
@F 0

@n
� F 00

@F
@n

� �
ð26Þ

1
Pr

h00 þ 1
2

Fh0 ¼ n F 0
@h
@n
� h0

@F
@n

� �
ð27Þ

With the normal velocity v expressed in Eq. (25), the boundary con-
dition of vw is given by

F ¼ j
@F
@j

; at g ¼ 0 ð28Þ

The other boundary conditions are stated in Eqs. (14), (15), (19), and
(21).

2.3. Local-similarity model

Before proceeding into the local non-similarity method, it is
useful to examine the boundary-layer equations Eqs. (8) and (9)
from the perspective of local similarity concept. To derive the
equations for local similarity model, one assumes that the terms
on the right side of Eqs. (26)–(28) are sufficiently small so that they
may be neglected. Then the local similarity transformation is given
by

F 000 þ 1
2

FF 002 � nh ¼ 0 ð29Þ

1
Pr

h00 þ 1
2

Fh0 ¼ 0 ð30Þ

Accordingly, the boundary conditions for local similarity transfor-
mation are

Fð0Þ ¼ 0
F 0ð0Þ ¼ jF 00ð0Þ
hð0Þ ¼ j

Pr
2c
cþ1 h0ð0Þ þ 1

F 0ðn;1Þ ¼ 1; hðn;1Þ ¼ 0

8>>><
>>>:

ð31Þ

The parameter n and j contained in the governing equations and
boundary conditions can be regarded as assigned constant values
at any streamwise location along the plate. As a result, the govern-
ing equations transformed by the local similarity method can be
treated as a system of ordinary differential equations, with partial
non-similar effects retained in the momentum equation and the
boundary conditions. For a given value of n and j, the solution is
independent of other streamwise locations. Therefore, by assigning
a succession of n and j values along the plate, the velocity and tem-
perature distributions can be determined.

Nevertheless, the comparatively simplified solution is at the ex-
pense of uncertain accuracy. During the local-similarity transfor-
mation, the non-similar terms on the right side of Eqs. (26) and
(27), i.e., parts of the momentum and energy equations, were lost.
The local similarity postulation requires n be close to zero which is
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valid for negligible buoyancy effects. Otherwise, the whole terms
in bracket on right side of Eqs. (26) and (27) must be very small
to justify the exclusion of non-similar terms. The validity of the lat-
ter assumption, however, is subject to uncertainty and thus is a
weakness of the local-similarity method. The local-similarity
concept discussed above represents the first step in a succession
of local non-similarity transformations.

2.4. Local non-similarity models

In order to overcome the limitations imposed by local-similarity
method, the local non-similar boundary-layer equations will now
be derived. The two-equation model will be first derived. Let

Gðn;gÞ ¼ @Fðn;gÞ=@n; uðn;gÞ ¼ @hðn;gÞ=@n ð32Þ

Note also that the two similarity variables n and g are both a func-
tion of x and they are related by

dj=dn ¼ �j=2n ð33Þ

Differentiating Eqs. (26) and (27) with respect to n, gives the set of
auxiliary equations

G000 þ 1
2

FG00 � F 0G0 þ 3
2

F 00G� nu� h ¼ n
@

@n
ðF 0G0 � F 00GÞ ð34Þ

1
Pr

u00 þ 1
2

Fu0 � F 0uþ 3
2

Gh0 ¼ n
@

@j
ðF 0u� h0GÞ ð35Þ

Similarly, the additional boundary conditions can be obtained by
differentiating Eqs. (14), (15), (21), and (28) with respective to n

Gð0Þ ¼ � 2
3 n @

@n Gð0Þ

G0ð0Þ ¼ � j
2n F 00ð0Þ þ jG00ð0Þ

uð0Þ ¼ 1
Pr

2c
cþ1 � j

2n h0ð0Þ þ ju0ð0Þ
h i

G0ðn;1Þ ¼ 0; uðn;1Þ ¼ 0

8>>>>>><
>>>>>>:

ð36Þ

If the right side terms containing no/on in Eqs. (34) and (35) are
neglected, then they become as the subsidiary momentum and
energy equations for Eqs. (26) and (27). In a likely manner, Eq.
(36) is auxiliary boundary conditions to the original ones. This is
referred to as the two-equation model since the momentum and
energy distribution each involves the solution to two simultaneous
equations.

The above outlined procedures represent the first stage of the
local non-similarity model. The governing equations for the
three-equation model can be formulated in a similar manner to
the two-equation model. First let

Hðn;gÞ ¼ @G=@n; vðn;gÞ ¼ @u=@n ð37Þ

Then Eqs. (34)–(36) are differentiated with respect to n and neglect
the terms containing no2/on2 This transformation yields a second set
of auxiliary equations and boundary conditions

H000 þ 1
2

FH00 � 2F 0H0 þ 5
2

F 00H þ 3GG00 � 2ðG0Þ2 � nv� 2u ¼ 0 ð38Þ

1
Pr

v00 þ 1
2

Fv0 � 2F 0vþ 3Gu0 � 2G0uþ 5
2

Hh0 ¼ 0 ð39Þ

Hð0Þ ¼ 0

H0ð0Þ ¼ 3j
4n2 F 00ð0Þ � j

n G00ð0Þ þ jH00ð0Þ

vð0Þ ¼ 1
Pr

2c
cþ1

3j
4n2 h0ð0Þ � j

n u
0ð0Þ þ jv0ð0Þ

h i
H0ðn;1Þ ¼ 0; vðn;1Þ ¼ 0

8>>>>><
>>>>>:

ð40Þ

In summary, all the momentum and energy equations for the three-
equation model are brought together as
F 000 þ 1
2

FF 00 � nh ¼ n F 0
@F 0

@n
� F 00

@F
@n

� �
ð41aÞ

1
Pr

h00 þ 1
2

Fh0 ¼ n F 0
@h
@n
� h0

@F
@n

� �
ð41bÞ

G000 þ 1
2

FG00 � F 0G0 þ 3
2

F 00G� nu� h ¼ nðG0G0 þ F 0H0 � G00G� F 00HÞ

ð41cÞ
1
Pr

u00 þ 1
2

Fu0 � F 0uþ 3
2

Gh0 ¼ nðG0uþ F 0v�u0G� h0HÞ ð41dÞ

H000 þ 1
2

FH00 � 2F 0H0 þ 5
2

F 00H þ 3GG00 � 2ðG0Þ2 � nv� 2u ¼ 0 ð41eÞ

1
Pr

v00 þ 1
2

Fv0 � 2F 0vþ 3Gu0 � 2G0uþ 5
2

Hh0 ¼ 0 ð41fÞ

The three-equation model involves six coupled momentum and en-
ergy equations that need to be solved simultaneously in conjunc-
tion with a set of boundary conditions. Although the solution to
the three-equation model provides information on six parameters,
it is only F and h and their derivatives that are of primary interest
since they are the ones meaningful to the physical problem. The
above transformed governing equations are identical to those re-
ported in [26] since the general mixed convection regardless of
the presence of slip is also dependent on streamwise locations.
The effect of momentum and thermal discontinuity are reflected
in the boundary conditions in Eqs. (31), (36) and (40).

The local non-similarity transformation preserves the non-sim-
ilar terms in original governing equations and boundary conditions
with only part of the subsidiary non-similar terms dropped from
its subsidiary equations. Since the original governing equations re-
main intact, the local non-similarity method is expected to be
more accurate than the local-similarity solution. In addition, since
the non-similar terms are only dropped at the level of the second-
arily subsidiary momentum and energy equations, the results from
the three-equation model should have higher accuracy than those
from the two-equation model. The reader may also wish to consult
the literature [27,28] for more discussion regarding the numerical
accuracy of the local non-similarity method.
3. Results and discussion

The system of ordinary differential equations for the local non-
similarity three-equation model represents a two-point boundary
value problem and needs to be solved simultaneously. The equa-
tions were solved numerically using the three-stage Lobatto IIIA
collocation method that provides continuous solutions of fourth-
order accuracy uniformly in the problem domain. The numerical
algorithm, application procedures and validation of accuracy have
been outlined in great detail in [29,30], so they will not be repeated
here.

Numerical solutions were obtained for mixed convection in only
the assisting case for present study. Results from the three-equa-
tion non-similarity model are presented for velocity and tempera-
ture distribution, wall slip velocity, wall shear stress, skin friction
coefficient and average Nusselt number over the plate.

3.1. Effect of slip in gaseous flows

Mixed convection with slip is first considered for assisting flow
in gases. Fig. 2 shows the representative velocity profiles for
Pr = 0.72 in assisting mixed flows at varying rarefaction conditions.
At j equal to 0, Fig. 2(a) shows the velocity distribution at the no-
slip condition. In the case of a very weak buoyancy effect, e.g.,
n = 0.0001, the result is very close to the pure forced convection.
For example, F0(g) is less than 1% variation with the classical
Blasius solution [14]. It is also seen From Fig. 2(a)–(d), that the



(a) 0=κ                         (b) 1=κ

(c) 2=κ                          (d) 4=κ

Fig. 2. Representative velocity profile from three-equation model (Pr = 0.72).

Fig. 3. Wall slip velocity as a function of non-continuum.
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velocity profile in the vicinity of plate will be greatly altered due to
the presence of non-continuum at the wall. In forced convection
dominated flows i.e., n 6 0.5, the slip velocity at the wall increases
with the increasing non-continuum condition. In flow with strong
buoyancy effects i.e., n P 2.0, the peak velocity in the boundary
layer is seen to decrease with the increasingly rarefied condition,
causing approximately 30% and 12% decrease respectively for n of
2.0 and 8.0 as j varies from 0 to 4.0. Note also the position g at
which the peak velocity attains will shift toward the plate as the
flow becomes more rarefied.

The wall slip velocity F0(0) as a function of non-continuum for Pr
of 0.72 is shown in Fig. 3. The slip velocity is seen to increase with
increasing buoyancy effects. The slip velocity will reach approxi-
mately 78% of the free stream velocity for n of 0.0001 and 120%
for n of 8.0 as j approaches 5, which indicates the flow is acceler-
ated by natural convection near the plate. It is also interesting to
note that in the buoyancy dominated flows, i.e., n = 8.0, the slip
velocity tends to decrease after reaching a peak value rather than
monotonically increase with the increased rarefaction. For in-
stance, in mixed flow with n = 8.0, F0(0) initially increases with
the rarefaction reaching a peak value of 1.308 at j equal to 1.7.



Table 1
Comparison of local wall stress at the no-slip condition (Pr = 1.0).

n W(n) W(n) [5]

0.00001 105.0 105.0
0.00448 5.038 5.038
0.04928 1.742 1.742
0.10048 1.388 1.388
0.20288 1.197 1.196
0.30528 1.143 1.142
0.46912 1.123 1.120
0.55104 1.124 1.121
0.67392 1.131 1.127
0.79680 1.142 1.137
0.87872 1.150 1.145
1.00000 1.164 1.157
1.2815 1.195 1.186
1.5375 1.223 1.213
2.1007 1.281 1.268
2.5103 1.320 1.304
4.0463 1.441 1.419
5.2751 1.520 1.494

10.190 1.751 1.714
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The slip velocity begins to decrease slowly as the flow becomes fur-
ther rarefied, giving about 9% drop below the peak value as j ap-
proaches 5.0. This behavior is due to the growing effect of
natural convection in the mixed flows. It can be justified by a closer
examination of the second boundary condition in Eq. (31), which
indicates the wall slip velocity will attain its peak value when
the product of non-continuum j and the dimensionless skin fric-
tion F00(0) is maximized, as is seen shortly.

Skin friction coefficient is one of the physical quantities of inter-
est in evaluating the viscous stress acting on the surface the plate.
The wall shear stress can be expressed as

sw ¼ l@u
@y

����
y¼0
¼ lu1

x
Re1=2

x F 00ð0Þ ð42Þ

Hence then the local friction coefficient has the form

Cf ;x ¼
sw;x

qu2
1=2

¼ 2Re�1=2
x F 00ð0Þ ð43Þ

The dimensionless skin friction F00(0) is shown in Fig. 4. The result
shows that for a given n, F00(0) has the maximum value at the no-slip
condition and the wall shear stress will decrease as the flow be-
comes more rarefied. In addition, a faster percentage drop of F00(0)
is found in buoyancy dominated flows. For instance, F00(0) decreases
by approximately 75% for n at 8.0 and 45% for n of 0.5, as j varies
from 0 to 1.0. Note also at this point, the behavior of wall slip veloc-
ity can be examined closely. As noticed earlier, the peak slip velocity
F0(0) will occur when the product of j and F00(0) is maximized. From
geometric reasoning, jF00(0) represents the rectangle area encom-
passed by respective coordinate for an arbitrary point on the curve
shown in Fig. 4. Therefore, the maximum wall slip velocity is
attained when this area is maximized. It has also been shown in
the figure that F00(0) is 0.3322 at n equal to 0.0001. The wall shear
stress differs only 0.05% from the classical Blasius solution at the
no-slip condition.

The local wall shear stress at the no-slip condition is compared
to the results reported by Merkin [5] for the cases of n varying from
0.00001 to 10.190. Note that for direct comparison, the results pre-
sented in Table 1 are based on Pr of 1.0, which is the same Prandtl

number used by Merkin. Note W(n) in the table is defined as
Cf ;x

2Re�1=2
x n1=2. It is seen that for no-slip condition, the local wall shear

stress based on the three-equation model agrees reasonably well
with the published data in [5]. The maximum difference is about
2% at n of 10.190. The differences between the results obtained
in this study and those reported by Merkin [5] are seen to increase
Fig. 4. Skin friction as a function of non-continuum (Pr = 0.72).
gradually as n increases. The difference between the two set of re-
sults may be attributed to the nature of the numerical methods
used in respective study. For the non-similarity methods, parts of
the non-similar terms are dropped from the subsidiary bound-
ary-layer equations during the transformation processes. While
the omitted terms may have negligible effects in numerical accu-
racy for small n values, inaccuracy will be introduced as n increases
especially to large values. On the other hand, the results reported
by Merkin [5] were obtained by matching the results of a numeri-
cal integration with the asymptotic series solutions at far down
stream. The potential numerical inaccuracy for this method in-
cludes truncation error in the series solutions as well as the differ-
ence approximation used for the numerical integration. The reader
may wish to consult [5] for more information about the numerical
accuracy.

The total viscous drag force per unit width can be computed by
integrating the wall shear stress over the entire plate of length L

FD ¼
Z L

0
swdx ¼ qv1=2u3=2

1

Z L

0
x�1=2F 00ð0Þdx ð44Þ

The drag coefficient is defined as [25]

CD ¼ FD=
1
2
qu2
1L

� �
ð45Þ

After substituting the definition of non-continuum parameter j in
to Eq. (44), and changing the integration with respect to j, the
expression for the drag coefficient is

CD=Re�1=2
L ¼ 4jL

Z 1

jL

F 00ðn; 0Þj�2dj ð46Þ

where jL is the non-similarity variable j evaluated at length L. Note
Eq. (46) is similar to the integral form of drag coefficient for pure
forced convection in rarefied flows reported in [24]. The integrand
F00(n,0) is however different than that for the pure force convection
since it is also a function of the mixed convection parameter. As
seen in Fig. 4, for a given Prandtl number and n, F00(0) varies with
the non-continuum condition j. The functional relation between
F00(0) and j may be obtained by curve fitting. Take n of 1.0 and Pr
of 0.72, for instance, F00(0) may be correlated by

Cf ;x

2Re�1=2
x

¼ 3:314
2:728þ 3:288j1:029 ; ðPr ¼ 0:72; n ¼ 1:0Þ ð47Þ

The coefficient of determination of the above equation is 0.9999.
The drag coefficient CD

Re�1=2
L

was obtained by substituting Eq. (47) into



Fig. 6. Viscous boundary layer thickness (Pr = 0.72).
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Eq. (46) for numerical integration. The drag coefficient as a function
of non-continuum for Pr of 0.72 and n of 1.0 is plotted in Fig. 5. The
result shows that the drag coefficient decreases rapidly with the
increasing non-continuum condition, giving approximately 90%
drop as jL varies from 0 to 5.0.

The boundary layer thickness is given by

d ¼ xgbRe�1=2
x ð48Þ

For mixed flows, the freestream velocity is superimposed by the
velocity component from the natural convection. Hence the conven-
tional definition of boundary thickness for forced and natural con-
vection does not apply directly for mixed flows. The viscous
boundary layer thickness, however, may be defined from the stand-
point of the shear stress, i.e., the value of g where the magnitude of
F00(g) = 0.01. The expression of boundary layer thickness can be
substituted into the definition of j in Eq. (16) to obtain,

j ¼ Kndgb ð49Þ

Eq. (49) indicates that the effect of slip is a function of boundary
layer thickness. The value of gb as a function of n for varying non-
continuum conditions is shown in Fig. 6. It is interesting to note
the general trend that the viscous boundary layer thickness will
first decease to a localized minimum value and then increase with
the increasing buoyancy effects. This behavior is due to the effect
that natural convection enhances the velocity field near the plate.
It is also seen that the boundary layer thickness decreases as the
flow becomes more rarefied. This behavior suggests that the transi-
tion to turbulence in gaseous flows could be delayed as the flow in
rarefied flows.

Fig. 7 shows the dimensionless temperature profile h for Pr of
0.72 with varying n at differing non-continuum conditions. It is
seen that the amount of thermal jump at the wall will increase
monotonically as the flow being more rarefied, giving an average
of 80% decrease relative to the no-slip value as j varies from 0 to
4.0. The dimensionless wall temperature as a function of non-con-
tinuum for Pr of 0.72 is shown in Fig. 8. The amount of temperature
drop is greater as the buoyancy effects become stronger. Note also
the decreasing rate in temperature is more drastic at the initial
stage of rarefaction, for instance, it causes more than a 45% reduc-
tion in h(0) for n at 1.0 when j varies from the no-slip condition to
1.0. The result indicates that a small thermal jump condition at the
wall boundary can have a remarkable impact on the temperature
distribution within the boundary layer.
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Fig. 5. Drag coefficient as a function of non-continuum (Pr = 0.72).
The dimensionless local heat transfer is proportional to the
magnitude of the local temperature gradient on the plate, given

by Nux

Re1=2
x
¼ �h0ðn;0Þ. The local heat transfer at the plate as a function

of the mixed convection parameter and the non-continuum
parameter is plotted in Fig. 9. The results show that the heat trans-
fer tends to decrease as the flow becomes more rarefied, causing an
about 80% decrease for n of 8.0 and 65% for n of 0.001, as j varies
from 0 to 5.0. This behavior is due to the effect of the simultaneous
velocity slip and thermal jump conditions imposed at the wall.
Although it is expected that the enhanced velocity due to slip near
the plate will increase the local heat transfer, the existing wall
temperature jump plays a counteractive role in decreasing the heat
transfer. The attenuation in heat transfer caused by the thermal
jump condition outweighs the increased amount caused by the slip
velocity, thereby resulting in a decreasing local heat transfer with
rarefaction. It is also seen that the local heat transfer is greater in
the natural convection dominated flows at slightly rarefied condi-
tions, i.e., j < 1. However, the heat transfer in flows with strong
buoyancy effects is seen to decrease more rapidly with the increas-
ing non-continuum than in weak buoyancy flows. At highly rare-
fied conditions, the heat transfer rate is less affected by the
buoyancy effects, causing only 2% difference between n of 0.001
and 8.0 at j = 5.0.

The local heat transfer Nux

Re1=2
x

at the no-slip condition is compared

to the results reported in [5] for n varying from 0.00001 to 10.190.
The results tabulated in Table 2 are based on Pr of 1.0. Note Q(n) is
defined as Nux

Re1=2
x n1=2. It is seen that the local heat transfer at no-slip

condition from the three-equation model agrees reasonably well
with the results in [5], giving a maximum difference of about
1.8% at n of 10.190.

The average Nusselt number over the entire plate is an impor-
tant physical quantity of interest in quantifying heat transfer
behavior. The average heat transfer coefficient can be defined as

�h ¼ 1
L

Z L

0
hdx ¼ k

L
u1
m

� �1=2 Z L

0
�h0ðn; 0Þx�1=2dx ð50Þ

Then the average Nusselt number over the entire plate is given by

NuL ¼
u1
m

� �1=2 Z L

0
�h0ðn;0Þx�1=2dx ð51Þ

As seen in Fig. 9, the wall temperature gradient h0(n, 0) (or the local
heat transfer) can be viewed as a function of j as well due to the
interfacial non-continuum. In terms of the definition of j, the aver-
age Nusselt number can be derived as an integral form



(a) 0=κ                         (b) 1=κ

(c) 2=κ                          (d) 4=κ

Fig. 7. Temperature profile from three-equation model (Pr = 0.72).

Fig. 8. Wall temperature as a function of non-continuum (Pr = 0.72). Fig. 9. Local heat transfer as a function of non-continuum (Pr = 0.72).
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Table 2
Comparison of local heat transfer at the no-slip condition (Pr = 1.0).

n Q(n) Q(n) [5]

0.00001 105.0 105.0
0.00448 4.978 4.978
0.04928 1.552 1.552
0.10048 1.122 1.122
0.20288 0.8311 0.8315
0.30528 0.7058 0.7066
0.46912 0.5998 0.6011
0.55104 0.5656 0.5672
0.67392 0.5265 0.5284
0.79680 0.4967 0.4989
0.87872 0.4804 0.4827
1.00000 0.4599 0.4624
1.2815 0.4237 0.4266
1.5375 0.3996 0.4028
2.1007 0.3623 0.3659
2.5103 0.3430 0.3468
4.0463 0.2976 0.3018
5.2751 0.2756 0.2799

10.190 0.2290 0.2334

Fig. 10. Average Nusselt number as a function of non-continuum (Pr = 0.72).
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NuL=Re1=2
L ¼ 2jL

Z 1

jL

�h0ðn;0Þj�2dj ð52Þ

where jL ¼ KnLRe1=2
L . Note also Eq. (50) is similar to the average

Nusselt number for pure forced convection reported in [24]. It is
due to the fact that both the mixed convection and non-continuum
parameter are dependent upon the streamwise location. The inte-
grand h0(n,0) contained in Eq. (52) however differs than that for
pure forced convection for it is also a function of the mixed convec-
tion parameter. For a given Prandtl number and mixed convection
condition, the temperature gradient varies with j only. The expres-
sion of �h0(n,0) therefore may be obtained fitting the curve to j.
Take Pr of 0.72 and n of 1.0 for example, the wall temperature gra-
dient can be related as a function of the non-continuum through

Nux

Re1=2
x

¼ 2:145
5:166þ 2:403j1:179 ð53Þ

The above correlation gives a coefficient of determination of 0.9997.
The average Nusselt number was then obtained by substituting the
above expression into Eq. (52) for numerical integration and the
result is plotted in Fig. 10. It is evident that the heat transfer will
decrease significantly with the increasingly rarefied condition, giv-
ing more than 85% decrease in average Nusselt number as the flow
varies from the no-slip condition to highly rarefied at j equal to 5.0.
The foregoing procedures can be repeated to determine the average
Nusselt number at an arbitrary mixed convection condition of n,
provided the curve fitting process and numerical integration are
of acceptable accuracy.

3.2. Effect of slip in liquid flows

The foregoing discussion has focused on the effect of simulta-
neous momentum and thermal interfacial discontinuity in gaseous
mixed convection. Our discussion in this section is extended to the
effects of slip upon mixed convection in liquids. As heat transfer is
concerned for slip flow in liquids, it is usually assumed that there is
no wall temperature jump accompanying with the momentum slip
[24]. Thus, the temperature at the wall is still the no-slip condition
h(0) = 0. Other boundary conditions remain unaltered. Numerical
solutions were obtained for Pr of 7.0 in assisting flow with differing
non-continuum conditions.

Fig. 11 shows the representative velocity profiles for Pr of 7.0 in
assisting flow as a function of non-continuum and mixed condi-
tions. Similar to that in gaseous flows, the velocity distribution
near the plate is significantly affected by the degree of rarefaction.
Increases are predicted in both wall slip velocity and the peak
velocity in buoyancy dominated flows as the flow becomes
increasingly rarefied.

The wall slip velocity F0(0) as a function of non-continuum for Pr
of 7.0 is shown in Fig. 12. The slip velocity at the plate increases
monotonically as the flow becomes more rarefied. In addition,
the slip velocity tends to increase with the increasing buoyancy
effects. Note F0(0) reaches approximately 78% of the free stream
velocity for n of 0.0001 and 200% for n of 8.0, as j approaches 5.
The buoyancy effects are shown to enhance the slip velocity at
the plate as the flow becomes more rarefied.

Fig. 13 shows the dimensionless wall shear stress for Pr of 7.0.
The result shows that F00(0) will decrease with the as the flow be-
comes more rarefied. It is also seen that in buoyancy dominated
flows the wall shear stress decreases more rapidly, i.e., F00(0) de-
creases by approximately 60% for n at 8.0 and 30% for n at0.5, as
j varies from 0 to 1.0.

Fig. 14 shows the local heat transfer on the plate as a function of
the non-continuum parameter for Pr of 7.0. Note the local heat
transfer is equal to the value of �h0(n,0). The result shows that
the local heat transfer will be greatly enhanced by the increased
rarefaction condition in liquid flows. For instance, the increase in
Nux

Re1=2
x

is approximate 77% for n of 8.0 and 105% for n of 0.001.

Although the local heat transfer is greater at larger n, the percent-
age of change is more significant in buoyancy dominated flows,
indicating the velocity slip has a greater impact on heat transfer
in flows with less buoyancy effects.

By the same procedure illustrated in the preceding subsection,
the average Nusselt number over the entire plate can be obtained
by integrating Eq. (52). For example, with n of 1.0 and Pr of 7.0, the
temperature gradient may be correlated with non-continuum by

Nux

Re1=2
x

¼ 0:6431þ j1:066

0:7495þ 0:5464j1:092 ð54Þ

This correlation gives a determination of 0.999993. The results for
average Nusselt number are plotted in Fig. 15. The result shows that
the heat transfer over the entire plate will increase significantly
with the increasingly rarefied condition, giving more than 100% in-
crease in the average Nusselt number as the flow varies from the
no-slip condition to highly rarefied at j equal to 5.0. It is also inter-
esting to notice that the heat transfer behavior in rarefied liquid
flow is contrary to that in gases, as seen in Fig. 10. In liquids, the
velocity slip boundary condition leads to an increased velocity field



(a) κ = 0                                                (b) κ = 2 

(c) κ = 4 

Fig. 11. Velocity profile as a function of j and n (Pr = 7.0).

Fig. 12. Wall slip velocity as a function of non-continuum (Pr = 7.0). Fig. 13. Wall shear stress as a function of non-continuum (Pr = 7.0).
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Fig. 14. Local heat transfer as a function of non-continuum (Pr = 7.0).

Fig. 15. Average Nusselt number as a function of non-continuum (Pr = 7.0).

3840 K. Cao, J. Baker / International Journal of Heat and Mass Transfer 52 (2009) 3829–3841
near the plate. As a result, heat transfer from the plate will be en-
hanced due to the increased velocity field as the flow becomes more
rarefied. Nevertheless, in gaseous flows, the presence of thermal
jump condition at the wall will significantly mitigate the heat trans-
fer from the plate. It also turns out that the decreased heat transfer
due to the presence of thermal jump offsets more than that gained
by the velocity slip, thereby leading to a reduced heat transfer in
gaseous slip flows.
4. Conclusion

The boundary-layer equations for mixed convection over a ver-
tical flat plate have been solved with first-order interfacial slip
boundary conditions using local non-similarity transformations.
The mixed rarefied flows are found to be governed by two non-
similarity variables: mixed convection controlling index n and
non-continuum condition j. Numerical solutions based on the
three-equation model have been obtained for mixed convection
in assisting flows for Prandtl numbers of 0.72 and 7.0, respectively.
For each Prandtl number, the mixed convection parameter was
varied from 0.0001 to 8.0 allowing the buoyancy forces to vary
from weak to dominating. Non-similar velocity and temperature
distributions within boundary layer have been shown for a wide
range of non-continuum conditions. In buoyancy dominated gas-
eous flows, a peak slip velocity exists in moderately rarefied condi-
tion, i.e., the maximum wall slip velocity reaches 1.308 at j equal
to 1.7 for n of 8.0. In liquid flows, the wall slip velocity however is
found to increase monotonically as the flow becomes more rare-
fied. The slip boundary condition results in a rapid decrease in wall
shear stress below the no-slip value. For instance at n of 1.0, F00(0)
decreases by more than 85% in gas flow (Pr = 0.72) and 75% in li-
quid (Pr = 7.0) as j varies from 0 to 5. In addition, the decrease
in wall shear stress is found to be more substantial in stronger
buoyancy flows.

The heat transfer in the boundary layer is also affected by the
presence of interfacial slip boundary conditions. In liquid slip
flows, the heat transfer is augmented greater than the no-slip value
as a result of the momentum slip. In gaseous flows, however, the
heat transfer decreases as the flow becomes more rarefied. This
behavior is due to the fact that temperature jump condition re-
duces the heat transfer more than that enhanced by the wall slip
velocity.

In addition, the integral formulation of the drag coefficient Eq.
(46) and average Nusselt number Eq. (52) as a function of non-con-
tinuum conditions are useful for the analysis of mixed convective
flow in microscale configurations or at slightly rarefied environ-
ments.
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